Risk Assessment Acrylamide – A Case Study

By - Sunil Adsule

ILSI India
Technical Workshop on Risk based Approaches
For Food Safety Management
New Delhi - September 2012

Contents

- Risk Analysis Components
- What is Risk Assessment
- General Principles of Risk Assessment
- Acrylamide A Case Study

Safe Food for All

Food Safety and Standards Authority of India भारतीय खाद्य संरक्षा एवं मानक प्राधिकरण

- Public Health Protection
- Enshrined in the Food Safety and Standards Act 2006
- Application of risk analysis to be integral part of National Food Safety Systems
- Codex CAC/GL 62-2007 mandates Risk Analysis to be
 - applied consistently;
 - open, transparent and documented &
 - evaluated and reviewed as appropriate in the light of newly generated scientific data

Risk Analysis Framework

- Risk Assessment
- Risk Management
- Risk Communication

Codex Definition of Few Terms

- Hazard A biological, chemical or physical agent in, or condition of, food with the potential (or possibility) to cause an adverse health effect
- Exposure Assessment The qualitative and/or quantitative evaluation of the likely intake of biological, chemical, and physical agents via food as well as exposures from other sources if relevant
- Risk A function of the probability of an adverse health effect and the severity of that effect, consequential to a hazard(s) in food

What is Risk

Risk is a function of hazard and exposure

Risk = Hazard x Exposure

+

Potency (amount to cause ill effects) Routes (how are we exposed) +

Likelihood (improbable to common)

Approaches

Hazard – based safety assessment

Risk – based safety assessment

Why Risk Based Approach - Two Main Reasons

- Hazard based safety assessment only a potential to cause an adverse health effect
- ignores impact and contributes to poor regulatory policy making
 - o may lead to the banning of a wide array of substances
- Risk based safety assessment a probability of an adverse health effect and the severity of that effect
 - o examine the weight of evidence as to whether a risk actually exists
 - often provide a quantitative indication of the probability of various outcomes
- Food Safety and Standards Act Section 16(2)(i)
 - Underscores FSSAI's approach on evolving standards using risk analysis approach

Principles of Risk Assessment

- Risk Assessment A scientifically based process consisting of the following steps:
 - Hazard identification: The identification of biological, chemical, and physical agents capable of causing adverse health effects
 - Hazard characterization: The qualitative and/or quantitative evaluation of the nature of the adverse health effects associated with the hazard
 - Exposure assessment
 - Risk characterization: The process of determining the qualitative and/or quantitative estimation, including attendant uncertainties, of the probability of occurrence and severity of known or potential adverse health effects

Contaminant - Codex and FSSAI Definition

- Codex Standard 193-1995(2010) & FSS Act 2006
 Section 3(g) defines 'contaminant' as follows:
- Any substance not intentionally added to food, which is present in such food as a result of the
 - production (including operations carried out in crop husbandry, animal husbandry and veterinary medicine),
 - o manufacture,
 - o processing,
 - preparation,
 - o treatment,
 - o packing, packaging,
 - transport or
 - holding of such food or as a result of environmental contamination.
 - The term does not include insect fragments, rodent hairs and other extraneous matter"

Acrylamide - Codex / EFSA Approach

What is Acrylamide

- Acrylamide is a well-known and regulated substance used in various industries, including the manufacture of plastics.
 - known to induce cancer in animals, damage nerves and impair male fertility
 - Until recently, it was not known to occur in starchy food
- Acrylamide is a chemical intermediate (monomer) used in the synthesis of polyacrylamides
- Polyacrylamide is used as
 - Flocculent in the treatment of municipal water supply and in paper and pulp processing
 - o Cosmetic additives,
 - Soil conditioning agents
 - In formulation of grouting agents

Acrylamide – Formation / Cause of Concern

- In April 2002, Swedish scientists found acrylamide in certain cooked foods
- Formed in carbohydrate-rich foods during hightemperature cooking, e.g. during frying, baking, roasting, toasting and grilling
- Acrylamide is mainly formed in food by the reaction of asparagine (an amino acid) with reducing sugars (particularly glucose and fructose) as part of the Maillard Reaction
- Formation primarily takes place under conditions of high temperature (usually in excess of 120 °C) and low moisture

Acrylamide - Approach Taken

- Major international efforts have been mounted to investigate the
 - principal sources of dietary exposure,
 - assess the associated health risks and
 - develop risk management strategies
- JECFA undertook a comprehensive analysis of acrylamide occurrence data from 24 countries
 - o It was concluded that the major contributing food groups were French fries, potato crisps3, coffee, biscuits/pastries, bread and rolls/toasted bread
- European Commission Heatox Project (€4.2 Million)
 - Estimate health risks from compounds in heated foods
 - To study reaction pathways Testing raw materials, production / cooking processes – industrial and at home to reduce formation of such compounds
 - Impact on cooking and nutritional properties of food due to altered practices
 - Level of acrylamide in various food-stuffs

Acrylamide – EFSA Study Areas 1-10

- Levels of acrylamide in Foods
- Acrylamide Dietary Exposure
- Ways to reduce
- Formation mechanism
- Bioavailability in Foods
- Toxicology-carcigenocity Studies
- Biomarkers of acrylamide
- Epidemiology
- Methods of Analysis
- International Activities

Acrylamide – Measures Taken vs MRLs

- Codex has issued Code of Practice intends to provide
 - National and local authorities,
 - Manufacturers and
 - Other relevant bodies with
- Guidance to prevent and reduce formation of acrylamide in potato products and cereal products.
- The guidance covers three strategies (where information is available) for reducing acrylamide formation in particular products:
 - o Raw materials;
 - Control / addition of other ingredients; and
 - Food processing and heating

Acrylamide – Collaborative Approach

- European Commission enlists acrylamide under Chemicals for which investigations are ongoing
- EC has so far issued
 - Recommendation on the monitoring of acrylamide levels in food
 - o Recommendation on investigations into the levels of acrylamide in food
- Member States advised to carry out investigations in cases where
 the levels of acrylamide in a foodstuff, tested in the monitoring
 exercise, exceeds acrylamide "signal levels" determined for
 specific foods which are not safety values, rather based on levels
 observed
- Commission will assess the situation again by December 2012 basis data submitted on exceeding the "signal levels"
- The food industry in close co-operation with the national authorities and the European Commission, has developed a "toolbox" to highlight ways to lower levels of acrylamide in food
- No MRL or contaminant limit fixed yet by Codex or EFSA

Thank You